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An analytical solution to the problem of nonstationary thermal interaction of a flow of a heat-transfer agent 

and a thin-walled tube with longitudinal fins is constructed for variable parameters of heat transfer. 

Heat-exchange devices that include a thin-walled tube with longitudinal fins as a component find 
application in modern power engineering, chemical engineering, cryogenic engineering, and a number of other 

branches of the national economy. 
A linear model of a nonstationary process of heat transfer in the device described is investigated in [1 ] 

using a one-sided integral Laplace transform in the time variable. The conditions for suitability of the method made 

it impossible to consider the case of variable parameters of heat transfer, which is of interest for practical 

applications. The indicated difficulty was overcome in [2 ] by using a finite-difference scheme of run, modified for 

a complex multinodal graph, In recent calculations of nonstationary temperature fields in elements of heat-exchange 

equipment and power-generating devices good use is made of the method of the integral Laguerre transform in the 

time variable, which makes it possible to take account of a change in the transfer parameters along the spatial 

coordinate and with time within the framework of a linear approximation [3 -6  ]. 
If well-known limitations are met, the integral Laguerre transform [7 ] assigns to each function f(t) a column 

vector f whose components are defined by the rule 

f n = ( f ;  Ln), n =  1, 2 ,  3 . . . . .  (1) 

where 

L n (t) = exp t d n [exp ( -  t) tn]; 
n ! dt n 

(x,  y) = .~ x (t) y (t) exp ( -  t) at.  
o 

The inverse transform has the form 

f ( t )  = fT.L(t)  = ~ fnLn(t) ,  (2) 
n=0 

where T denotes transposition and the dot denotes scalar multiplication of vectors. Below, substantial use is made 

of a functional property of the integral Laguerre transform: 

7/;L  = E /k-Y(0) ,  (3) 
k=0 
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Fig. 1. Scheme of the process of heat transfer in a longitudinally finned tube. 

which, in symbolic form appears  as 

d f  ~ Df  - f0 ; 
dt 

where D is an infinite dimensional  matrix whose elements above the diagonal are zero and  below the diagonal and 

on the diagonal are unity,  and the components  of the column vector f0 are the values of f (0) .  

We consider the nonsta t ionary  process of conjugate heat  t ransfer  in a thin-walled tube with longitudinal 

fins in its interaction with a flow of a hea t - t ransfer  agent  whose scheme is shown in Fig. 1. Let all thermophysical  

characteristics of the flow and the tube and fin material  be independent  of the temperature ,  the coefficient of heat  

t r ans fe r  f rom the h e a t - t r a n s f e r  agent  to the tube wall be independen t  of the h e a t - t r a n s f e r  agent  and  wall 

temperatures ,  the t empera ture  of  the flow of the hea t - t ransfer  agent  be constant over the cross section and depend 

only on the time t and the longitudinal coordinate z, and the tube wall and fin temperatures  be constant  over the 

thickness and  depend on the time t, the longitudinal coordinate z, and the t ransverse coordinate x. 

Below we assume that  the hea t - t ransfer  coefficients are known functions of the coordinates and  the time. 

We will assume that  the thermal  load on the outer surface of the heat -exchange device is a combination of the 

known heat  flux densi ty q = q(t, x, z) and the interaction with the ambient  medium, whose tempera ture  is prescribed 

as a function of the coordinates and the time. All end surfaces of the device are adiabatically isolated, the root 

sections of the fins are in ideal thermal  contact with the tube wall. We assume that  the characteristic dimension of 

the device along the z coordinate is much larger than the characteristic t ransverse dimension along the x coordinate,  

and the change in tempera ture  along the z axis is relatively small. The  latter makes  it possible to disregard the 

longitudinal component  of the conductive heat flux compared to the transverse one. Let us assume that  the influence 

of heat  conduction on the tempera ture  of the flow of the heat - t ransfer  agent  is small. 

We consider the tempera ture  distributions over all structural elements of the device and the distribution of 

the hea t - t ransfer  agent  tempera ture  along the z axis to be known at the initial time. At t > 0 the flow of the 

hea t - t ransfer  agent  G = G(t) with the prescribed tempera ture  O(t) is supplied to the inlet of the hea t -exchange  

device (z = 0). The  problem is to find the tempera ture  distributions over the elements of the hea t -exchange  device 

at subsequent times. We note that  in the described s ta tement  the model of the process a change in the coordinate 

within the limits from zero to infinity is possible. The  latter is convenient when one needs to analyze the tempera ture  

field in the vicinity of the "inlet" to the heat -exchange apparatus.  

In view of the assumptions made  the mathematical  formulation of the problem has the form 
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Ou 0 2161 0U ClPl61 at - Ox ~x + al (agl - u) + ql (t, x ,  z); (4) 

OV 0 /],262 OV 
C2P262 Ot - Ox 7x + a  2(r V) +~ '2(0- -  V) + q2( t '  X, z); (s) 

Ow_ 0 Ow 
caPaaa ot Ox 2303 ~ + cz3 (c~ - w) + if3 (0 - w) + q3 (t ,  x ,  z) ; (6) 

C4P4640/90t -- oxO 2464~X + a4 (094 -- 19) + q4(t ,  X, z)', (7) 

b2 b 3 
F 00 c G 00 cpp -~+ p ~z = f ~2(v-O)  dx+ f f f3(w-O) dx; 

0 0 

(8) 

u ( 0 ,  x ,  ~) = u ~  z); (9) 

v ( O , x , ~ )  v ~  (lO) 

w(0 ,  x ,  z ) =  w ~  z); (11) 

/9 (0, x ,  z) =/90 (x,  z) ; (12) 

o (o, z) -- o ~ (z) ; (13) 

O-~u (t bl, z ) = 0 ,  t > 0 "  
OX ' 

(14) 

- -~  z ) = 0 ,  t>0",  
OX 

(15) 

u ( t ,  0 ,  z ) = v ( t ,  0 ,  z ) = w ( t ,  0 ,  z) ,  t > 0 ;  (16) 

Ow 
J.161 -~0u ( t  . . . . .  0 z )  + J.262 0~ (t, 0 ,  z) + 2363 ~ (t, 0 z) = 0 t > 0" 

v ( t ,  b 2, z ) =  w( t ,  b3, z ) = 0 ( t ,  b4, z), t > 0 ;  

(17) 

(18) 

Ov Ow O0 
226z ~x (t ,  b 2 , z) + 2363 ~ ( t ,  b a , z) + 2404 ~X (t, b 4 , z) = 0 ; (19) 

o ( 0 ,  t ) = o * ( t ) ,  t > 0 .  (20) 
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We will apply  the  direct  integral  Laguer re  t r ans fo rm in the variable t to problem ( 4 ) -  (20). By using the  

vec tor -mat r ix  form we obta in  the  following problem in the  image space: 

O 0u * .~i0 �9 (21) 
21c~1 -~x -- Alu = ql - , 

o 0v * -~2o )]'252 ~x -- A2v = q2 -- (22) 

O 0w q* Jl30 �9 (23) 2 3 5 3 ~ - A 3 w  = 3 -- , 

019 * ~4 0 . 
";!'454 ~x  -- A20 ---- q4 -- , (24) 

d---z + A*O = + f ~lzvdx + f ~t3wdx ; (25) 
0 0 

0---Ru ( b l ,  z) = O" (26) 
Ox 

0 0 ( 0  z ) = 0 "  (27) 
O X  ' 

u ( o ,  z) = v ( o ,  z) = w ( o ,  ~) ; (28) 

Ou 0v 0w 
2 1 5 1 ~ ( 0 ,  z) + 2 2 5 2 ~ ( 0 ,  z) + 2 3 0 3 ~ ( 0 ,  z) = 0;  (29) 

v(b2 ,  z) = w(b3 ,  z) = '0  (b 4,, z);  (30) 

0v 0w 00 
J'252-~x (b2' z) + 2 3 5 3 ~ x  (b3, z) +2454~x  (b4' z) = O; (31) 

here  

where  

0 (0) = 0 "  , (32) 

o. {,  o; o;} = c o l u m n  0 o , , , . . .  

O k L k (t) exp ( -  t) dt k = O, 1 2 3 �9 
o 

(Ai)mn = (aiLm ; Zn) + ciPi 5i Dmn + (Ai)mn ; 
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f 
(~t ~ Omn, i =  1,  4 ,  

i)mn = [ (alL m ; Ln) , i = 2 ,  3 ; 

�9 ; o) . 
(qi)n = (q ; Ln) + cj~ (u n; qi = -  (qi +ate~ i =  1,  4;  

0 0 0 = v 0 0 0 0 = 190 
( U l ) n = t t  ; (tt2) n , u  (U2)n = W ; (u4) n ; u ; 

A* = G -1 
b2 b3 ) 
f 712dx + f .7tadx + cop FG-1D;  
0 o 

Gmn = (ctTGL m ; Ln) ; 

f* = 0 = 00 cpp FG-100 ," O n ," Yn," O n = O ," u  

O m n = O ;  Y m ;  Y n ;  n ,  m = 0 ,  1, 2 ,  ... 

We introduce the following notation: 

x = c o l u m n  u ,  v ,  w ,  0 ; x = c o l u m n  (u*) T (V*) T (W*) T (19")T 

where 

0u v* 0v w* 0w O* O0 
U* = ~101 -~x ; = ~2c52 ~XX ; = 2363 -~X ; = ~[4c34 ~XX" 

By rewriting systems of second-order equations (21) - (24)  in an equivalent form we obtain for each system the 

following expression: 

A_ 
Ox . + R i . = 

tr tr i ~o i 
i = 1 , 4 .  (33) 

The partitioned matrices R i are defined by the relation: 

g i = 

0 

- A i 

2 i c5 i 

0 

- - - E  

) i = 1 , 4 ,  

where E is a unit matrix (Ea = a); 

~~ = qi - Ai 0 

The general solution of Eq. (33) is as follows: 

/r ] = ~io i ( x ,  0) tci.(0) ] 

/r ) /r (0) ) 
where ~i(x ,  ~) is a fundamental  matrix of the system. 

Under  certain conditions 

05 i (x ,  ~) = exp 

, i = 1 , 4 .  

x (o  1 + f ,pi (x ~) 
0 ' ~'~ (~) 

d~, 

602 



Taking account of the form of the vector in the integrand,  it is convenient to write the general solution of Eq. (33) 

as 

i (x  O ) , q ( O ) +  i �9 x i tc i(x) = t/)ll , qOlZ(X, O) K i (0) "t- f t2Ol2(X, ~)Ti(~)  d~;  
0 

* i i * x i 
X i (X) = q~21 (X, 0) tC i (0) + q~22 (X, 0) tr (0) + f q~22 (X, ~) Ti (~) d~.  

0 

(34) 

We note that 0 depends only on z; then relations (34) appear as 

i (x  O) x i ( O ) +  i * /r = tJOll , tiOlZ(X, O)~i(O)+ri (x)+Bi(x)O ; 

. /X 

�9 i i (x  O) tc i (0) + P i (X)  + B i ( x )  O " x i (x )  = q:'21 ( x ,  O) x i (0)  + '922 , 

(35) 

where 

X i * 
r i ( x ) =  f ~ 1 2 ( x ,  ~ ) q i ( ~ ) d ~ ,  i =  1,  4 ;  

o 

X 

i (x ~)qi  (~)d~ i =  1 4" Pi(x) = f q)22 . . . .  
o 

X i 

o 

^ x i (x ~)A (~)d~ i =  1 4 B i ( x ) = f % z  , i , , �9 
0 

We note that 

A 

r i ( O ) = O ;  P i (O)=O;  i =  1, 4; B i ( O ) = O ,  B i ( O ) = O ,  i =  1, 4 .  

It can easily be seen that the solution of the problem in the form (35) is completely determined if the vector 0 (we 
determine it below) and the components of the partitioned column vector g are known: 

g = column { u (0) T U* (0) T V (0) T V* (0) T W (0) T W* (0) T 0 (0) T 0* (0) T } 

Requiring fulfillment of boundary conditions (26) - (31), we arrive at the following (partitioned) system of equations 
for determining the components of the vector g: 

Kg = s o + 2 ,  (36) 

where the nonzero components of the partitioned matrix K are determined by the relations 

1 1 
Kit  =q~11 (bl ,  0) ;  K 1 2 = ~ 2 2 ( b l ,  0) ;  

K28 = K31 = K41 = K52 = K54 = K56 = E ;  K33 = K45 ~ - E;  

2 2 3 
K63 -= K73 = (lOll (b 2 , 0) ; K64 = K74 = q)12 (b2, 0) ; K65 = - qSll (b 3 , 0) ; 
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3 
K66 = -- ~12 (b3, 0 ) ;  

2 
K83 = riO21 (b 2 , 0 ) ;  

3 
K86 = t/~22 (b3, 0) ; 

4 
K77 = -- r (b4, 0) ; 

2 
K84 = t2022 (b2, O) ; 

4 
/(87 ----- t/~21 (b4, 0 ) ;  

4 
K78 = - tD12 (b4, 0) ; 

3 
K85 = t2021 (b3, 0) ; 

/(88 = t/~42 (b4, 0) .  

The components of the parti t ioned column vector of the r ight-hand sides of Eq. (36) are 

s O = column { ( s l )  T , 0 T , 0 T , 0 T , 0 T , (s6) T , ($7) T , (S08)T } ; 

co,um I r o o * o o w = [ - ,  . . . .  2 6 ,  27 , '~'8 j "  

Here  we adopt the notation 

1 
So = - Pl (bl) ; 

6 7 
s o = r a (ba) - r 2 (b 2) ; s o = r 4 (b 4) - r 2 (b2) ; 

8 ^ 
SO = - P2 (b2) - Pa (b3) - P4 (b4) ; ~1 = BI (bl) 0 = M~ 0 ; 

Jr6 = [B2(b2) - ~3 (b3)]0 = M 60  ; )l 7 = [B2(b2) - B 4 ( b 4 ) ] 0  = M 7 . 0  ; 

~n, A A M ~ .  
28 = [B 2 (b2) + B 3 (b3) + B 4 (b4)]0 = 0 . 

Let W = K - i ;  then the components of the vector g are determined by the relation 

g =  W s0 +  W2, 

from which it follows that all the components of the partitioned vector g depend on 0 in a linear manner.  

We introduce the following notation: 

g 0 + W i j s  ; M i =  Wi.i M . ,  i, ]= l ,  8, 

where ~ is the j - th  element of the parti t ioned vector So; Wq is a square matrix, being the (ij)-th element of the 

partitioned matrix W. 

By substituting the found values of the components of the vector g into expressions (35) we obtain 

2i- 1 i 2i 
i (x 0) g0 + (x ,  0) + r i (x )  + N / 0  (37) x i (x) = ~ i I  , ~12 go , 

where 

where 

i M2i-1 i M2i N / = r (x ,  0) + r (x ,  0) - Bi (x) ,  

After substitution of relations (37) into Eq. (25) we find 

dO 
d--~ + AO + h, 

i = 1 , 4 .  

A = A *  - G - 1  

b 2 b 3 
f ;hN2dx + f ~3Jax 
o 0 

(38) 

604 



TABLE 1. Results of the Calculation 

Temperature 

U 

V 

t/ 

V 

0.1 

t 

0.5 1.0 

z = 0 . 1 ; x = 0 . 0 4  

0.00576 : 0.0238 

0.00594 i 0.0241 

I 
z=0.1; x= 0.08 

i 
0.00550 

0.00589 

0.0237 

0.0241 

z = 0 . 4 ; x =  0.08 

0.00283 i 0.0210 

0.00320 0.0213 

0.0466 

0.04688 

0.0465 

0.0468 

0.0438 

0.0440 

h = f * + G  -1 
b2 

2 3 2 4 
f J~2 [q~11 (x, O) g o + q~12 (x, O) g o + rz(x)]dx+ 
0 

b 3 
3 5 3 6 

+ f A3 [(I)11 ( x ,  0) go + (:/)12 (X, 0) go + r3 (x)] dx 
0 

We write out the solution of (38) with account for boundary condition (32): 

Z 

0(z) =q~(z, 0) 0 '+  f q~(z, ~)h(~)d~, 
0 

where 

[z 1 (z, ~) = e x p  - f A(~)d~ , 

which completes the construction of the solution of the Considered problem as a whole since all the sought functions 

are determined in the image space and the inverse transformation is performed by the rule (2). 

The present work gives results of calculating temperature distributions over the fins, the tube walls, and 

the prescribed cross section of the flow of the heat transfer agent under the following assumptions: the initial 

temperature distributions over the element of the heat-exchange device (including the flow temperature) are 

uniform and are taken as the origin; a flow of the heat-transfer agent with dimensionless temperature equal to 

unity is supplied to the inlet of the element; there is no heat transfer with the ambient medium; the dimensionless 

length of the tube is a = 1; the dimensionless width of the fins is bl = b4  = 0 . 1 ;  the dimensionless value of the 

half-perimeter of the tube is b2 = b3 = 0.1 (the profile is symmetrric). The thermophysical properties of the material, 

the coefficients of heat transfer with the flow of the  heat-transfer agent, and the flow rate and thermophysical 
properties of the heat-transfer agent are constant in time and space. The dimensionless flow velocity is 5.0, the 

dimensionless coefficient of heat transfer between the tube walls and the flow of the heat-transfer agent is 0.1, and 

between the flow of the heat-transfer agent and the tube walls it is 0.01. Two terms of the expansion are retained 

in the solution (for Lo = 1 and L 1 = 1 - -  t ) ,  and in calculating the matrix exponent and the integrals by a recurrence 
method use is made of eight terms of the expansion. 
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Fig. 2. Dimensionless temperature of the heat-transfer agent 0 vs z coordinate 

at the time: 1) t = 0.1; 2) 1.0. 

Results of the calculations are given in Table 1 and Fig. 2. It can easily be seen that even in the 

approximation adopted the solution agrees completely with the physical meaning of the problem. Table 1 takes 

account of the symmetry of the results of calculating the temperature in cross sections x = const that are located 

in the same manner relative to the axis of the tube cross section. 

Compared to the method of the integral Laplace transform, use of the integral Laguerre transform in the 

time variable extends the possibility of investigating linear problems of conjugate heat transfer with variable 

parameters of the transfer. 

N O T A T I O N  

u, O, temperatures of the fins; v, w, temperatures of the tube walls; O, temperature of the flow of the 

heat-transfer agent; a i, i = 1, 4, coefficients of heat transfer from the ambient medium to the fins and the tube 

walls, respectively; ~o i, i = 1, 4, temperature distributions for the ambient medium; ~i, i = 2, 3, coefficients of heat 

transfer from the flow of the heat-transfer agent to the tube walls; qi, density of the heat flux to the corresponding 

portions of the tube; ci, 2i, Pi,  cSi, i = 1, 4, heat capacity, thermal conductivity, density, and thickness of the fin 

and tube material; cp, p ,  G, F,  heat capacity, density, and flow rate of the heat-transfer agent, cross-sectional area 

of the tube; bi, a, i = 1, 4, dimensions of the tube. 
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